

HR-34™ ROOF & WALL PANEL NEGATIVE-POSITIVE LOAD CHARTS (3 SCREWS)

	SECTION PROPERTIES							ALLOWABLE UNIFORM LOADS, psf For various clip spacings (i.e. span values)									
Width, in.	Gauge	Yield ksi	Weight psf	Top in Compression			Botton	n in Comp	ression	Negative Load							
				l _{xx} in ⁴ /ft.	I _{xx (eff)} in ⁴ /ft.	S _{xx} in³/ft	I _{xx} in ⁴ /ft.	l _{xx (eff)} in ⁴ /ft.	S _{xx} in³/ft	2'	2.5'	3'	3.5'	4'	4.5'	5'	
34	26	80	0.96	0.0702	0.0694	0.0699	0.0675	0.0683	0.0830	87.5	80.4	73.3	66.3	59.2	52.1	45.0	
34	24	50	1.18	0.1060	0.1067	0.1233	0.1085	0.1078	0.1337	100.0	90.8	81.7	72.5	63.3	54.2	45.0	
34	22	50	1.46	0.1307	0.1317	0.1539	0.1343	0.1333	0.1681	100.0	90.8	81.7	72.5	63.3	54.2	45.0	
34	20	33	1.76	0.1767	0.1777	0.2140	0.1802	0.1792	0.2200	105.0	9S.8	86.7	77.5	68.3	59.2	50.0	
34	0.032"	19	0.52	0.1690	0.1690	0.2390	0.1690	0.1690	0.2070	112.5	100.8	89.7	78.5	67.3	56.2	45.0	
34	0.040"	19	0.65	0.2120	0.2120	0.2970	0.2120	0.2120	0.2570	100.0	90.0	80.0	70.0	60.0	50.0	40.0	

1a. Theoretical section properties for steel panels have been calculated per AISI S100 Specification for the Design of Cold-Formed Steel Structural Members.

1b. Theoretical section properties for aluminum panels have been calculated per the latest edition of the Aluminum Association Design Manual.

2. Ixx (eff) values are "effective" stiffness properties for positive (downward) load induced deflection determination.

3. Sxx values are to be used for flexural (bending) stress determination for downward (positive) pressure values only.

4. Charted Load/Span values are based on ASTM E1592-05 (2017) testing protocol.

5. Charted Load/Span values above are based on Allowable Stress Design (ASD).....Load Resistance Factor Design (LRFD) technique not recommended for charted values.

6. Charted Allowable Uniform Loads are based on the Ultimate Uniform Load (per ASTM E1592-05 testing) divided by a 2.00 Factor-of-Safety.

7. Charted Allowable Uniform Loads do not consider panel weight (Dead Load) or clip-to-substrate (structure) fastener connection strength.

8. Panel-to-substrate (structure) fastener evaluation and analysis should be performed by a licensed structural engineer.

9. Minimum recommended substrate (structure) recommendations:

a. Open-framing (i.e. purlins) - 16 ga. (design thickness = 0.0566")

b. Plywood/OSB - 5/8" (nominal)....this recommended thickness assures an effective degree of fastener thread engagement

c. Metal deck - 22 ga. (design thickness = 0.0283")

10. Deflection limit consideration for positive (downward) loading is limited to a deflection ratio of L/180 of the span....where "L" is the span in inches.

11. Charted Allowable Uniform Loads cannot be increased by 1/3.

12. Tested assembly used three (3) fasteners per panel.

				SECTION PROPERTIES						ALLOWABLE UNIFORM LOADS, psf For various clip spacings (i.e. span values)										
Width, in.	Gauge	Yield ksi	Weight psf	Top in Compression			Bottom in Compression			Positive Load										
				l _{xx} in ⁴ /ft.	I _{xx (eff)} in ⁴ /ft.	S _{xx} in ³ /ft	l _{xx} in ⁴ /ft.	I _{xx (eff)} in ⁴ /ft.	S _{xx} in³/ft	2'	2.5'	3'	3.5'	4'	4.5'	5'	5.5'	6'	8'	
34	26	80	0.96	0.0702	0.0694	0.0699	0.0675	0.0683	0.0830	234.6	187.6	156.4	134.0	117.3	104.2	93.8	85.3	77.7	43.7	
34	24	50	1.18	0.1060	0.1067	0.1233	0.1085	0.1078	0.1337	243.6	194.9	162.4	139.2	121.8	108.3	97.5	88.6	81.2	48.2	
34	22	50	1.46	0.1307	0.1317	0.1539	0.1343	0.1333	0.1681	318.2	254.6	212.1	181.8	159.1	141.4	127.3	115.7	106.1	60.1	
34	20	33	1.76	0.1767	0.1777	0.2140	0.1802	0.1792	0.2200	380.0	304.0	253.3	217.1	190.0	168.9	142.7	117.9	99.1	55.7	
34	0.032"	19	0.52	0.1690	0.1690	0.2390	0.1690	0.1690	0.2070	63.2	50.6	42.1	36.1	31.6	28.1	25.3	229.0	21.1		
34	0.040"	19	0.65	0.2120	0.2120	0.2970	0.2120	0.2120	0.2570	98.6	78.9	65.8	56.4	49.3	43.8	39.5	35.9	32.9	24.7	

1a. Theoretical section properties for Steel panelshave been calculated per 2020 AISI S100 North American Specification for the Design of Cold-Formed Steel Structura Member. Ixx and Sxx are effective section properties for deflection and bending.

1b. Theoretical section properties for Aluminum panels have been calculated per the 2020 edition of the Aluminum Association's Design Manual.

Ixx and Sxx are effective section properties for deflection and bending.

2a. Allowable loads for Steel panels are calculated in accordance with 2020 AISI S100 specifications considering bending, shear, combined bending and shear and deflection. Allowable load considers a 3 or more equal span condition.

2b. Allowable loads for Aluminum panels are calculated in accordance with the 2020 edition of the Aluminum Association's Design Manual considering bending, shear, combined bending and shear and deflection. Allowable load considers a 3 or more equal span condition.

3. Allowable load does not address panel weight, fasteners, connection strength or support material.

4. Allowable load includes web crippling.

5. Load/Span values are based on theoretical computations and not load testing.

6. Deflection is not considered.

7. Allowable loads do not include a 1/3 stress increase for wind.

8. The HR-34 Panel when installed as a three-span condition with spans of 5 ft. on-center for Steel and 2.5 ft. on-center for Aluminum are capable of

withstanding the minimum uniform distributed load of 20 psf (0.958 kPa) noted in Table 1607.1 of the IBC and a minimum concentrated load of 300 lbf (1.33 kN). 9. When panels are installed over solid or closely fitted deck sheathing, the capacity is limited to the capacity of the underlying sheathing.

